VeriTainer Radiation Detector For Intermodal Shipping Containers

R. Redus, D. Sperry, T. Pantazis

Amptek, Inc
14 DeAngelo Dr, Bedford MA 01730

M. Alioto

VeriTainer, Inc.
650 Fifth Street, Suite 308, San Francisco, California 94107
Introduction

– There is a clear and pressing need to prevent clandestine importation of WMD via intermodal shipping containers
– Currently, 2% of the 6 million containers (per year) are monitored
– The goal is 100% monitoring
– How to achieve this without significantly impeding commerce?

House passes $7.4 billion port security bill, Jonathan Weisman, Washington Post, 5 May 06
VeriSpreader™ Concept

- **Goal:** Scan 100% of containers in the normal flow of commerce
 - No additional processing steps or time
 - Minimize false alarms from NORM

- **Approach:** Integrate neutron and spectroscopic gamma ray detectors into a container crane spreader bar
 - This is the piece of the container crane that directly engages an intermodal shipping container as it is moved onto and off of a container ship
 - Every container handled by the crane spends 30-60 seconds in close proximity to the spreader bar
 - Makes 100% screening feasible, since implemented during the existing handling interval
Typical crane at the Port of Oakland, CA

Container spreader bar
VeriSpreader™
Challenges

– Includes all the challenges of other radiation detection systems
 • Detecting the radiation with adequate sensitivity & resolution
 • Analyzing data to determine threat level

– Additional challenges in packaging & system engineering
 • Mechanical shock when spreader twistlock engages
 • Vibration when spreader bar is moving
 • Thermal fluctuations at end of bar
 • Constant exposure to humid, salty air
 • Robust communications over long distances (hundreds of meters) in noisy environment
VeriSpreader™ Concept

Radiation Detection Unit (RDU)
- NaI Scintillator/PMT
- 3He Tube
- GammaRad Electronics

- Fiber Optic Junction
- Ethernet Switch
- Spreader Bar
- Control System
- OCR
- Cameras
- Shipping Container

Local Control Station

Remote Monitoring Station

U.S. Patent 6,768,421
Key VeriSpreader™ Components

- Gamma-Rad Spectrometer
 - Ruggedized 76 x 152 mm NaI(Tl) with PMT
 - Digital processor with power supplies
 - Ethernet interface
- 3He Neutron Counter
- Radiation Detector Unit packaging
 - Packaging addresses environmental issues
 - Eight RDUs per spreader
- Optical sensor
 - Identify container and twistlock status to control acquisition
- Communication System
 - Ethernet via fiber optic for robust, long distance communications
- Analysis Software
Gamma-Rad Spectrometer

- Ruggedized scintillator & PMT from Scionix, Ltd.
- Amptek’s digital pulse processor and power supplies
Gamma-Rad Spectrometer

- Digital processor includes charge amplifier, digital shaping
- Choice of interfaces: USB, Ethernet, and RS232
- Auxiliary I/O includes counter input, timing & control signals
Gamma-Rad Key Features

– Ruggedized scintillator and PMT assembly

– Digital Processor
 • Integrates shaping amp, fast shaper, multichannel analyzer, microprocessor
 • Software configuration yields many options and adjustable parameters, set remotely, to optimize for specific conditions
 • Finite impulse response improves high count rate performance (better throughput, pile-up rejection, operation at 99% dead time)
 • Better stability and repeatability due to digital components

– Ethernet Interface
 • Robust communication over long distances (100 m)

– Gain stabilization algorithm
 • Operates in software using natural 40K background
Gamma-Rad Spectra

Spectra typical for 76 x 152 mm NaI(Tl) with PMT

\(^{137}\)Cs Spectrum

- 662 keV
- 42 keV (6.4%)

\(^{60}\)Co Spectrum

- 1.17 MeV
- 1.33 MeV
- 2.5 MeV sum peak

- 4.8% FWHM
Gamma-Rad Spectra

The graph shows the gamma-ray spectra with different isotopes and their associated energies:

- **133Ba**: 0.356 MeV
- **137Cs**: 0.662 MeV
- **238U**: 1.006 MeV
- **40K**: 1.46 MeV
- **208Tl**: 2615 keV (from 232Th decay)

The x-axis represents energy in keV, and the y-axis represents counts.
Gamma-Rad Spectra

Sensitivity vs resolution: 76 mm NaI(Tl) vs 5x5x3 mm3 CdTe stack
CdTe resolves more peaks but must count vastly longer

Mixed ^{241}Am, ^{137}Cs, ^{133}Ba, ^{60}Co, UO_3

Natural UO_3
Gamma-Rad Options

- 10 X 10 X 40 cm3 NaI(Tl)
 <7% FWHM at 662 keV
- 2.5 cm LaCl$_3$
Other VeriSpreader™ Components

Neutron Counter
- Moderated 3He detectors with 1 m active length, 50 mm diameter, and 4 atm pressure, supplied by St. Gobain Crystals & Detectors
- Dedicated HV supply and pulser shaper with TTL output

Radiation Detector Unit
- Includes shock mount to reduce shock & vibration levels
- Environmentally sealed to keep out humid, salty air
Software

– Data acquisition and control module
 • Optical system determines twistlock status to control data acquisition
 • Identifies container and associates nuclear data

– Data analysis module
 • Must distinguish NORM from possible threats
 – Background subtraction
 – Isotope identification
 – Threat analysis and reporting
 • Plan to use existing software and algorithms
 • Currently evaluating existing software
Spectra from Oakland Pilot Project

Key result: Good spectra were measured in this environment
- Background integrated for most of a day
- Typical container spectrum (similar to background)
- Chance measurement of declared uranium shipment
Results from Oakland Pilot Project

- Test conducted at Ben E. Nutter Container Terminal at the Port of Oakland
- Monitored 22 ships (6529 containers) from 14 Aug through 25 Oct 2005
- Representative spectra from undeclared containers shown below
Status

– Proof-of-concept prototype was built and tested
– Oakland pilot project demonstrated feasibility of measuring spectra in this environment
– Models and lab data verify sensitivity, spectral quality

Plans for Next Phase

– Build fully functional systems
 • Eight, 76 x 152 mm NaI(Tl) detectors on each spreader
 • Implement spectral analysis software
 • Hardware fabrication and software selection are in progress
– Validate performance in ports